

Team Number 05

Dr. Zambreno — Faculty Advisor
Dillon Peters — Team Lead

Parker Bibus — Computer Vision Lead
Jake Aunan — AR Glass Lead

Jamie Peterson — Mobile Lead
Brett Santema — Testing Manager

Aidan Sherburne — Report Manager

Team Email: sdmay21-05@iastate.edu
Team Website: https://sdmay21-05.sd.ece.iastate.edu

Revised: 11/15/2020 Version 3

AR Chess Advisor

DESIGN DOCUMENT

https://sdmay21-05.sd.ece.iastate.edu/

1

Strategy board game enthusiasts are constantly looking for ways to improve their skills at these

games. Currently, their options are limited to reading books or articles on game strategies, learning

from skilled professionals such as chess Grandmasters, playing more games against peers and bots,

playing situational puzzles, or attempting to learn recommended moves from a game engine. These

current methods are not only time consuming but also lack the levels of engagement and

excitement required, especially by younger players.

Our solution is to develop a system that uses augmented reality (AR) glasses to take pictures of the

game board and, using computer vision algorithms on the backend, determine the game board's

state and pass it to a game engine for analysis. Finally, we will deliver a recommended move to be

displayed on the AR glasses in real-time. The AR glasses will be responsible for capturing images of

the chessboard and transferring these images to the paired Android mobile device. The backend

will then perform the required image processing and, using computer vision algorithms, will

determine the game state. The game state will then be communicated to an existing game engine

implemented by the backend, and the resulting recommended move will be sent back to the AR

glasses to be displayed to the end-user.

Development Standards & Practices Used

Digital Design Standards:

• Accessibility

o Easy to use for the layperson

o Colors allow for usage by colorblind individuals

• Mobile/Android

o Clear layout and easy navigation

o Flexible components allowing for customized process

o Responsive, adaptive, and iterative

• Human-Centered

Software Development Standards/Practices:

• Documentation

o User documentation through user stories, feedback, and stakeholder reviews

o Technical documentation through reports and Git

• Single Accessible Repository – Git and GitLab

• Code

o Style

Executive Summary

2

o Modularity

o Naming Conventions

o Comments

• Agile Methodology Standards

• Lean Development – fail-fast

Engineering Standards:

• Reliability

• Scalability

• Performance

Summary of Requirements

Functional Requirements:

• An augmented reality (AR) glasses device that is nonintrusive (buy)

• Capture the game board state using the AR glasses

• Detect and process the board state using computer vision (CV) algorithms

• Determine the best move given the current state using top game engine(s)

• Indicate recommended moves to the user on the AR glass display

Environmental Requirements:

• The strategy board game should be played in a well-lit room

• For best results, the area around the gameboard should have high contrast

• The AR device should be kept in a clean, dry, and dust-free environment

• The strategy board game should be played in a low dust environment to keep the lens clear

Economic Requirements:

• The project should not exceed $1000 in cost. Advisor approval is required for expenditure

exceeding $300.

• A proof of concept product should be completed no later than the end of Spring Semester

2021

• "Build when you can, buy when necessary"

• Android smartphones may be necessary to serve as an emulator until the AR glasses are

purchased

Applicable Courses from Iowa State University Curriculum

Iowa State University courses with content applicable to our project include:

• COM S 227: Object-Oriented Design

3

• COM S 228: Data Structures

• COM S 309: Software Development Practices

• COM S 311: Introduction to Algorithm Design and Efficiency

• CPR E 185: Intro to Problem Solving I

• CPR E 186: Intro to Problem Solving II: Project

• CPR E 230: Cyber Security Fundamentals

• CPR E 308: Operating Systems, Principles, and Practice

• CPR E 388: Mobile Platforms

• CPR E 530: Network Protocols and Security

• ENGL 314: Reporting, Documenting, and Technical Communication

• S E 319: Construction of User Interfaces

• S E 329: Software Project Management

• S E 339: Software Architecture and Design

New Skills/Knowledge acquired that were not taught in courses

• Requirements Development

• Engineering Standards

• Encoding and Decoding of Images

• Running an Executable in the Background of a Mobile Application

• Basic Computer Vision with OpenCV

o Line detection

o Point detection

o Pre-processing techniques

• Jupyter Notebooks for Iterative Development

4

Table of Contents

1 Introduction 6

1.1 Acknowledgment 6

1.2 Problem and Project Statement 6

1.3 Operational Environment 6

1.4 Requirements 7

1.5 Intended Users and Uses 7

1.6 Assumptions and Limitations 8

1.7 Expected End Product and Deliverables 9

2 Project Plan 10

2.1 Task Decomposition 10

2.2 Risks And Risk Management/Mitigation 13

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 14

2.4 Project Timeline/Schedule 24

2.5 Project Tracking Procedures 26

2.6 Personnel Effort Requirements 26

2.7 Other Resource Requirements 32

2.8 Financial Requirements 33

3 Design 34

3.1 Previous Work And Literature 34

3.2 Design Thinking 34

3.3 Proposed Design 35

3.4 Technology Considerations 36

3.5 Design Analysis 37

3.6 Development Process 38

3.7 Design Plan 38

4 Testing 42

4.1 Unit Testing 42

4.2 Interface Testing 43

4.3 Acceptance Testing 43

4.4 Results 44

5 Implementation 47

5

6 Closing Material 52

6.1 Conclusion 52

6.2 References 53

List of figures/tables/symbols/definitions

List of Figures

Figure 1: Example Table Hierarchy for the AR Glass Component .. 16

Figure 2: Gantt Chart – Milestones .. 25

Figure 3: Gantt Chart - Project Planning and Design .. 25

Figure 4: Gantt Chart - Development ... 26

Figure 5: Modular Design Diagram .. 39

Figure 6: Component Flow Diagram .. 40

Figure 7: High Level Sequence Diagram ... 41

Figure 8: Line Detection .. 45

Figure 9: Internal Point Detection .. 46

Figure 10: External Point Detection .. 46

Figure 11: Full Point Detection .. 47

Figure 12: Game Advisor Welcome Screen ... 48

Figure 13: Game Advisor Welcome Screen Scrolled Right ... 49

Figure 14: Proof of Image Capture .. 50

Figure 15: Example Recommended Move.. 51

List of Tables

Table 1: Individual Task Metrics ... 24

Table 2: Personnel Effort Requirements ... 32

6

1 Introduction

1.1 ACKNOWLEDGMENT

The team would like to thank the Iowa State University Department of Electrical and Computer

Engineering for giving us resources, guidance, and expert consultation. We appreciate the

Electronic Technology Group for providing us with our team website, server resources, and

ordering the augmented reality glasses and chess set for our project. We would also like to thank

Dr. Joseph Zambreno for meeting with us weekly to give us guidance and advice while serving as

the Product Owner/Client.

1.2 PROBLEM AND PROJECT STATEMENT

Strategy board game enthusiasts are continually looking for ways to improve their skills at these

games. Currently, their options are limited to reading books or articles on game strategy, learning

from skilled professionals such as chess Grandmasters, practicing by playing games against peers

and bots, playing situational puzzles, or following recommendations given by a game engine.

These current methods are not only time consuming but also lack the levels of engagement and

excitement required to make them worthwhile, especially for younger players.

Our solution is a system that uses augmented reality (AR) glasses to analyze the state of the game

board and game pieces. Using computer vision algorithms, we determine the game board's state

and pass it to a game engine for analysis. Finally, we deliver a recommended move to be displayed

on the AR glasses in real-time. The AR glasses are responsible for capturing images of the game

board, processing them, and, using computer vision algorithms, determining the game state. The

game state is then communicated to a game engine, and the resulting recommended move is sent

back to the AR glasses to be displayed to the end-user.

Users of our application can get move recommendations from a game engine or build skill by

playing games against a computer controlled by a game engine.

1.3 OPERATIONAL ENVIRONMENT

The AR glasses used for capturing images and displaying the recommended move should be stored

in a clean environment free of dust and any objects that may scratch the camera or glass lenses.

When using the AR glasses, the user should be in a well-lit room where the area around the board

is high contrast to allow for consistent board and state detection.

The corresponding backend running the game (chess) engine may live in a separate location and

would need to communicate with the AR glasses through WIFI such that it can connect to the AR

glasses to receive the image transmissions and communicate recommendations between devices.

We assume this communication connection is autocompleted upon powering up the AR glasses

after the initial pairing synchronization.

The battery life and heat of the headset are also a concern. Given the high CPU usage necessary to

do image processing, keeping the glasses powered is a concern. To limit this concern, we

recommend that the user charge the glasses after long periods of use or use the glasses near outlets

7

that allow you to charge the glasses during operation. Additionally, high CPU usage will generate a

decent amount of heat. Therefore, we recommend you use the glasses in a cool, stable, temperature

environment such as one's own home. Additionally, we recommend avoiding using the sunglasses

in the direct summer heat as the sunlight will increase the temperature of the Vuzix Blade device

and increase the likelihood of temperature caused power off.

1.4 REQUIREMENTS

Functional Requirements:

• An augmented reality (AR) glasses device that is nonintrusive (buy)

• Capture the game board state using the AR glasses

• Detect and process the board state using computer vision (CV) algorithms

• Determine the best move given the current state using top game engine(s)

• Indicate recommended moves to the user on the AR glass display

Environmental Requirements:

• The Strategy board game should be played in a well-lit room

• For best results, the area around the gameboard should have high contrast

• The AR device should be kept in a clean, dry, and dust-free environment

• The Strategy board game should be played in a low dust environment to keep the lens clear

Economic Requirements:

• The project should not exceed $1000 in cost. Advisor approval is required for expenditure

exceeding $300.

• A proof of concept product should be completed no later than the end of Spring Semester

2021

• "Build when you can, buy when necessary"

• Android smartphones may be necessary to serve as an emulator until the AR glasses are

purchased

1.5 INTENDED USERS AND USES

Intended User:

This solution is intended to be used by consumers that need assistance with succeeding in certain

tabletop games (focus on chess). This could include:

• Novices looking to defeat experienced players

• Players looking to learn and improve at the game through constant advice

• Players who want to play against a game AI stored in a set of smart glasses

Intended Uses:

1. The user wants to play against the application's AI

1.1. The user sets up the board and begins the game

8

1.2. User lines up the board with the camera and scans for his chosen opponent color

1.3. The program examines the board and gives a visual cue for advice on how the

given opponent should move

1.4. The user performs the physical move for the AI and repeats until the game ends

2. The user wants to scan a board to get advice on his next move

2.1. The user opens the application on his smart glasses and activates the computer

vision component

2.2. The user lines the board up with the camera and takes a picture to be scanned

2.3. The program examines the board and gives a visual cue for advice on the user's

next move

2.4. The user performs the move on the board

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

The game is being played in a well-lit room. Good lighting is necessary for computer vision to work

properly. Ideally, the game board should have a high contrast background, and the game should be

played in a low-dust environment. Also, the lens on the AR glasses should be kept clear and dust-

free.

The game board and pieces are traditional, and rule standards are followed. For example, a game of

chess is being played on a standard 8x8 board with the standard ruleset as established by FIDE.

It is assumed that the players are using standard/tournament game pieces. This is so that the

computer vision can consistently identify the game pieces and not have to accommodate several

different variants of pieces.

The person wearing the AR glasses is the person playing the game and not a spectator. We are

choosing to focus on the player aspect to remain true to the original scope of the project, which is

to have the AR glasses suggesting moves directly to the player.

Limitations:

The project should not exceed $1000. The budget is mainly to be used for the Vuzix blade glasses,

which have already been ordered.

Minimum Viable Product should be completed no later than the end of spring semester 2021

The app may not be able to capture the game state accurately mid-game. The computer vision

cannot account for: knowing if a player can castle, knowing whose turn it is, and detecting a draw

via 3-fold repetition. Additionally, we do not want the user to have to enter any of the game state

information manually. Therefore, we are limited to only starting at the beginning of a game, and

the user will not be able to always get accurate moves if they attempt to put the glasses on mid-

game.

9

The user will not be able to play with a heavy time restriction (e.g. bullet chess) due to the time

needed for processing. The game engine API allows us to set a maximum time to calculate a move.

Still, additional time may be needed for computer vision processing and communication between

the headset and mobile device (if necessary). Specific time limitations are to be determined.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Our project will consist of four main pieces: An AR glasses front end, a computer vision back end

system, a strategy board game engine back end system, and potentially an Android companion app.

These four items will be present in each of our deliverable stages as they advance towards the final

product. Our project will have several key deliverable stages broken up into:

1. Finalized approach – September 18, 2020

The finalized approach is where our project will lock in the technologies that we plan to use.

There is a multitude of options for AR glasses and game engines to choose from, and decisions

need to be made in order to advance the project. After the research is complete and technology

is chosen, we will architect the project and create a development schedule. At this point, the

team is ready to start development with a solid plan in place for moving forward.

2. Proof of Concept – End of Fall 2020

The proof of concept is a showcase of our technology at work. At this stage, we have our AR

glasses able to display basic information, get images, and send images. Our computer vision

can recognize game pieces. And our game engine will be integrating with the android app. The

three pieces of the project may not all work together yet to play the strategy board game, but

they are starting to come together. AR glass can send a game board image, computer vision can

recognize items on a game board, and the game engine is being integrated.

3. Minimum Viable Product – mid-March 2021

The minimum viable product will be delivered when everything is working together to assist at

playing the strategy board game. In this stage, a user will be able to put on the AR Glasses, look

at a game board (at least when starting in the opening state) and receive recommended moves.

AR glass UI may not have final polish, and computer vision may not be perfect at recognizing

the board in some states, but a full match of a strategy board game can be played with

assistance.

4. Final Design – End of Spring 2021

The final design will take the minimum viable product and add polish. UI will be smooth and

clean; computer vision will be able to recognize game pieces and board clearly. At this stage,

someone who has never played the strategy board game or used AR glasses before should be

able to put on our product and competently play a game.

10

2 Project Plan

2.1 TASK DECOMPOSITION

The project is broken down into research and design, and development:

Research and Design:

1. Generate Requirements

1.1. Meet with Product Owner and Advisor Dr. Zambreno for project kickoff

1.2. Research the problem and empathize with users

2. Market Research

2.1. AR Glasses

2.1.1. Depends on 1.2

2.2. Computer Vision Software/Libraries

2.2.1. Depends on 1.2

2.3. Game Engines

2.3.1. Depends on 1.2

2.4. Network Communication Protocols

2.4.1. Depends on 1.2

2.5. Existing Mobile Back-ends

2.5.1. Depends on 1.2

3. Define Solution

3.1. Select AR Glass Device

3.1.1. Depends on 2.1

3.2. Select Computer Vision Software and Libraries

3.2.1. Depends on 2.2

3.3. Select Game Engine

3.3.1. Depends on 2.3

3.4. Select where the backend will live

3.4.1. Make an Ideal Selection

3.4.1.1. Depends on 2.3, 3.1

3.4.2. Determine backup selection

3.4.2.1. Depends on 2.3, 3.1

Development:

1. AR Glass Application

1.1. Project Creation

1.1.1. Create the project within Android Studio and select Design Layout and Navigation

Scheme

1.1.1.1. Depends on: N/A

1.1.2. Import the Vuzix Blade Hardware Profile

1.1.2.1. Depends on 1.1.1

1.2. Welcome Activity

1.2.1. Create Welcome Activity to be seen upon Glass Power On

11

1.2.1.1. Depends on 1.1

1.2.2. Connect to saved paired devices. This may not be necessary if the entire app can run

on the Vuzix Blade.

1.2.2.1. Depends on 1.1, 1.2.1, 1.3.2

1.3. Initial Setup

1.3.1. Develop Activities for device setup, including potentially pairing with a companion

device if necessary

1.3.1.1. Depends on 1.1

1.3.2. Create a way to save paired devices so that once initially paired, devices are auto

paired upon following boot ups. This may not be necessary if the entire app can run

on the Vuzix Blade.

1.3.2.1. Depends on 1.1, 1.3.1

1.4. Calibration

1.4.1. Develop Activities needed for camera and computer vision algorithm calibration

1.4.1.1. Depends on 1.1.2, 1.5.1, 1.3.1

1.5. Image Capture

1.5.1. Develop Activities needed for capturing an image

1.5.1.1. Depends on 1.1.2, 1.3.1

1.5.2. Setup Voice Commands to take a picture on user command

1.5.2.1. Depends on 1.1.2, 1.3.1

1.5.3. Setup Touch sensors to take a picture on a user gesture

1.5.3.1. Depends on 1.1.2, 1.3.1

1.6. Pre-processing

1.6.1. Convert color images to grayscale to minimize computational complexity and data

size

1.7. Display Move

1.7.1. Develop Activity for Displaying the engine's recommended move to the user

1.7.1.1. Ideally, through an AR overlay, but text is sufficient

1.7.1.2. Depends on 1.1.2

1.8. Communication

1.8.1. Develop, import, or customize the library for connecting to WIFI (or any other

network medium we will need to connect to the backend). This may not be necessary

if we run everything on the glasses.

1.8.1.1. Depends on 1.1.1

1.8.2. Develop, import, or customize the library for encoding images to be passed to the

backend

1.8.2.1. Depends on 1.1.1

1.8.3. Develop, import, or customize library for encoding and decoding text passed to or

from the backend

1.8.3.1. Depends on 1.1.1

2. Backend

2.1. Project Creation

2.1.1. Create the project within Android Studio and select Design Layout and Navigation

Scheme

2.1.1.1. Depends on: N/A

12

2.2. Communication

2.2.1. Develop, import, or customize library for connecting to WIFI (or any other network

medium we will need to connect to the front-end). This may not be necessary if we

run everything on the glasses.

2.2.1.1. Depends on 2.1.1

2.2.2. Develop, import, or customize the library for decoding images passed from the front

end

2.2.2.1. Depends on 2.1.1

2.2.3. Develop, import, or customize library for encoding and decoding text passed to or

from the front-end

2.2.3.1. Depends on 2.1.1

2.2.4. Develop, import, or customize the library for communicating with the Game Engine

2.2.4.1. Depends on 2.1.1

2.3. Computer Vision

2.3.1. Initial Setup

2.3.1.1. Ensure we can receive images transmitted by the front-end

2.3.1.1.1. Depends on 1.8.1, 2.1, 2.2.1

2.3.1.2. Create dataset for use in Board State Determination (May not be explicitly

required if we do not use nn/ml)

2.3.1.3. Setup codebase location in GitLab

2.3.1.4. Set up OpenCV project-specific .gitignore

2.3.1.4.1. Depends on 2.3.1.3

2.3.2. Calibration

2.3.2.1. Ensure the images we receive are in a standardized format (file type, size,

orientation, etc.)

2.3.2.1.1. Depends on 2.3.1.1

2.3.3. Image Processing

2.3.3.1. Setup python notebook and Generic OpenCV IO

2.3.3.1.1. Depends on 2.3.1.3

2.3.3.2. Ensure we can do edge detection of an image

2.3.3.2.1. Depends on 2.3.3.1

2.3.4. Board State Determination

2.3.4.1. Do line detection

2.3.4.1.1. Depends on 2.3.3.1

2.3.4.2. Check for chessboard layout from detected lines

2.3.4.2.1. Depends on 2.3.4.1

2.3.4.3. Only highlight chessboard after detecting layout

2.3.4.3.1. Depends on 2.3.4.2

2.3.4.4. Ensure we can find a single chess piece and place a bounding box around it

2.3.4.4.1. Depends on 2.3.2.1

2.3.4.5. Extend to find multiple chess pieces and place a bounding box around them

2.3.4.5.1. Depends on 2.3.4.4

2.3.4.6. Detect the type of each chess piece found

2.3.4.6.1. Depends on 2.3.4.4

2.3.4.7. Detect the position of each chess piece on the board.

13

2.3.4.7.1. Depends on 2.3.4.4, 2.3.4.5

2.3.4.8. Ensure we have and use a set format for the board state when communicating

with the game engine

2.4. Game Engine

2.4.1. Game Engine Setting Customization

2.4.1.1. Develop Activities to change the game engine settings for items such as

difficulty and response time (depth in chess engines)

2.4.1.1.1. Depends on 2.1.1

2.4.2. Import Game Engine

2.4.2.1. Download Game Engine

2.4.2.1.1. Depends on: N/A

2.4.2.2. Build and Compile the Game Engine Binary

2.4.2.2.1. Depends on 2.4.2.1

2.4.2.3. Import the Binary into the Back-end. Do any necessary environment

configuration as needed.

2.4.2.3.1. Depends on 2.4.2.2, 2.1.1

2.4.3. Result Decoding

2.4.3.1. Develop, import, or customize the library for decoding the recommended move

into terminology the average user can understand.

2.4.3.1.1. Depends on 2.1.1, 2.4.2.2

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

The possible risks, their probability, and the mitigation strategies for each are listed below:

• AR Glass Device is not capable of running the front-end and backend modules together –

40%

o To minimize this risk, we will develop the backend end functionality modularly

with as little cohesion to the front end as possible so that if necessary, we can

easily port the code to a separate application. We will also begin developed early in

Cpre 491 so that we have time to pivot if necessary.

• AR Glass Device does not have an emulator – 99%

o To minimize this risk, we will select an AR Glass Device that runs Android so that

all members can do development using the android emulators or an android

mobile device.

• Vuzix Developer Account Requires a Fee – 20%

o To minimize this risk, we created a developer account before purchasing the

glasses and spent a week exploring and downloading different resources while

looking for a paywall.

• Integrity: Attackers may be able to send fake requests to the backend or front-end

components with false images or recommended moves – 40% (Odds AR Glass Device

cannot run front-end and backend together)

o This risk will be solved in implementation through encryption and hashing so that

1) The hacker cannot send false images or moves, and 2) The hacker cannot send

invalid images or messages. This is only a risk if we must separate the front end

and back end modules and use some form of wireless communication.

14

• We are unable to find viable chessboard and chess piece datasets for classifier/model

training – 80%

o We can create our own classifiers and/or models for recognizing the boards and

pieces. Because this issue is so highly probable, we will implement the rest of our

program with modularity in mind, allowing us to quickly switch to our own

implementations if required.

• Python implementation of OpenCV runs too slow to be viable – 40%

o We can reimplement the OpenCV processing in C/C++, which will run faster and

use fewer system resources.

• Chess piece detection is too low to be viable for the final product – 70%

o We can pivot to a game with less complex pieces/setup, such as checkers or

connect four. This will allow us to keep the spirit of the product while being able

to achieve a complete working product.

o We may also need to implement a new game engine, depending on the complexity

of the replacement game chosen.

o This risk is minimized based on our assumptions that people will use traditional

chess sets and the environmental requirement that the device is played in a well-lit

environment.

• Inability to detect a state other than base starting state – 60%

o This corresponds to the chess piece detection being too low for a viable product. If

we cannot detect and determine the location of each piece, we have no way to

determine an arbitrary initial state such that the users could put the glasses on

mid-game. To limit this risk, we will assume that the glasses are not put on

midgame, and therefore the initial board state is known.

• Visual Overlay is difficult to understand, and the feedback pipeline is difficult to use and

unresponsive – 60%

o Our product is designed to be extremely user friendly, including being usable for

even the most basic and unfamiliar game players as well as those that are

unfamiliar with technology. Therefore, our user interface and interaction need to

be very friendly. To make the product as user friendly as possible, we will

implement two different ways for capturing images (voice and touch).

Additionally, we will use basic chess terminology for our prototype with the goal of

a full AR overlay such that the user does not need any chess knowledge to

understand the moves reported by the engine.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Key milestones for the project are based on our features, deliverables, and use cases. Each

milestone is completed by the use case verification specified in section 5.

• Completed Market Research and get the AR Glasses Ordered no later than 9/18/20

o This requires the Market Research and task 3.1 Selected AR Glass Device to be

completed.

• Begin Proof of Concept Development no later than October 1, 2020

o This requires all of section 3: Define Solution to be completed.

15

• Computer Vision Algorithms can detect chessboard and recognize a few pieces no later

than the Prototype Demo at the end of the fall semester.

o This requires that all Computer Vision subtasks up to and including Section 2.3.4.4

to have been completed by the end of the fall semester.

• Proof of Concept Development Complete by the end of the 2020 fall semester.

o This requires that all Computer Vision subtasks up to and including Section 2.3.4.4

to have been completed by the end of the fall semester as well as AR Glass tasks

(and their corresponding subtasks) 1.1 Project Creation, 1.2 Welcome Activity, 1.5

Image Capture, 1.6 Preprocessing, 1.7 Display Move, and 1.8 Communication.

• Minimum Viable Product Complete by mid-March 2021

o This requires all enumerated tasks below to be complete and passed the initial

round of interface and acceptance testing.

• Finalized Design Complete by the end of Spring 2021

o This requires multiple iterations of development and user acceptance testing after

completing the minimum viable product and should include nice to haves.

When developing metrics, is it important for our team to note that we will be using an Agile

Development approach. Therefore, the metrics for each task will focus on completion status,

accuracy, timing, and tests passed as these types of metrics are well suited for an iterative style of

development.

Given the detail and the sheer number of tasks we broke the project down into, the table format

used in this section as well as section 2.6 is not ideal. Our major project components are divided

into tasks, each with many subtasks, and these subtasks also have subtasks when you get to the

backend components. We did our best to represent the hierarchy using task numbers and a

combination of fill colors and indentation. The hierarchy we are attempting to illustrate in the

table for the top-level AR Glasses component is shown below in Figure 1.

16

Figure 1: Example Table Hierarchy for the AR Glass Component

Table 1 below matches each task up to its respective metrics, using the task number in the far-left

column as well as fill colors to try and illustrate the hierarchy of the tasks in a table format. For a

much clearer representation of this table and task hierarchy, please consult the extremely detailed

and extensive breakdown in the excel spreadsheet posted on our website.

Task
Number

Top Level
Module Task Name

Subtask Description
(If Needed)

Further Subtask
Description (If Needed) Task Metrics

1
Generate
Requirements

1.1

Meet with Product
Owner and Advisor Dr.
Zambreno for project
kickoff N/A

1.2

Research the problem
and empathize with
users

Number of areas
researched, types of
users explored, use
cases determined

2
Market
Research

Number of 2.X Subtasks
Completed Out of 5

17

2.1 AR Glasses

Number of viable
options found and
explored

2.2 Computer Vision

Number of viable
options found and
explored

2.3 Chess Engine

Number of viable
options found and
explored

2.4

Network
Communication and
Protocols

Number of viable
options found and
explored

2.5

Existing Mobile
Backends

Number of viable
options found and
explored

3
Define
Solution

Number of 3.X Subtasks
Completed Out of 4

3.1 Select AR Glass Device Selected? (Y/n)

3.2

Select Computer
Vision Software and
Libs Selected? (Y/n)

3.3 Select Chess Engine Selected? (Y/n)

3.4

Select Where Backend
Will Live

Number of 3.4.X
Subtasks Completed
out of 2

3.4.1

Make and Ideal
Backend Selection Selected? (Y/n)

3.4.2

Determine backup
backend selection Selected? (Y/n)

1
AR Glass
Application

Number of 1.X Subtasks
Completed Out of 8

1.1 Project Creation

Number of 1.1 Subtasks
Completed out of 2

1.1.1

Create Project within
Android Studio and
Select Design Layout,
Setup .gitignore Completed? (Y/n)

1.1.2

Import Vuxiz Blade
hardware Profile Completed? (Y/n)

18

1.2 Welcome Activity

Number of 1.2 Subtasks
Completed Out of 2

1.2.1

Create Welcome
Activity to be seen
upon Glass Power
On

% Complete?# Screens
Completed?
Communication Calls
hooked up?

1.2.2

Connect to saved
paired devices. This
many not be
necessary if the
entire app can run
on the Vuzix Blade

Can we connect to one
device? How many
devices are saved that
we try to connect to?

1.3 Initial Setup

Number of 1.3 Subtasks
Completed Out of 2

1.3.1

Develop Activites for
device setup
including potentially
pairing with a
companion device if
necessary

% Complete? # of
Screens completed?
Interfaced with
communication library?

1.3.2

Create a way to save
paired devices so
that once initially
paired, devices are
auto paired upon
following boot ups.
This may not be
necessary if entire
app can run on the
Vuzix Blade

Can we save a device? #
of devices we save?

1.4 Calibration

Number of 1.4.X
Subtasks completed out
of 1

1.4.1

Develop Activities
needed for camera
and computer vision
algorithm calibration

% Complete?# Screens
Completed?
Communication Calls
hooked up? Able to
send and recieve things
with the computer
vision module? (Y/n)
What are we able to
send and recieve
currently? (Text,
Images)

19

1.5 Image Capture

Number of 1.5.X
Subtasks completed out
of 3

1.5.1

Develop Activities
needed for capturing
an image

% Complete? # Screens
completed?
Communication Calls
Hooked Up?

1.5.2

Setup voice
Commands to take
picture on user
command

Able to recognize basic
voice commands? (Y/n)
How many custom
commands does it
respond to to take the
picture? % complete?

1.5.3

Setup touch sensors
to take picture on
user gesture

Able to recognize basic
gestures? (Y/n) %
complete?

1.6 Pre-Processing

Number of 1.6.X
Subtasks Completed
out of 1

1.6.1

Convert color images
to grayscale to
minimize
computational
complexity and data
size

Able to
translate/recolor
captured images to
grayscale (Y/n)?

1.7 Display Move

Number of 1.7.X
Subtasks Completed
out of 1

1.7.1

Develop Activity for
Displaying the
engine's
recommended move
to the user (Text
Estimate), Includes
implementing library
calls into activity

% Complete? # Screens
completed?
Communication calls
hooked up? (Y/n)

1.8 Communication

Number of 1.8.X
Subtasks Completed
Out of 3

1.8.1

Develop, import, or
customize library for
connecting to WIFI
(or any other
network medium we

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for

20

will need to connect
to the backend). This
may not be
necessary if we run
everything on the
glasses.

other activities to call
methods in library?

1.8.2

Develop, import, or
customize library for
encoding images to
be passed to the
backend

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in library?

1.8.3

Develop, import, or
customize library for
encoding and
decoding text passed
to or from the
backend

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in library?

2 Backend

Number of 2.X Subtasks
Completed out of 4

2.1 Project Creation

Number of 2.1.X
Subtasks Completed
out of 1

2.1.1

Create the project
within Android
Studio and select the
Design Layout and
.gitignore Completed? (Y/n)

2.2 Communication

Number of 2.2.X
Subtasks Completed
out of 4

2.2.1

Develop, import, or
customize library for
connecting to WIFI
(or any other
network medium we
will need to connect
to the front-end).
This may not be
necessary if we run
everything on the
glasses.

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in library?

21

2.2.2

Develop, import, or
customize library for
decoding images
passed from the
front end

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in library?

2.2.3

Develop, import, or
customize library for
encoding and
decoding text passed
to or from the front-
end

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in library?

2.2.4

Develop, import, or
customize library for
communicating with
the game engine

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in library?

2.3 Computer Vision

Number of 2.3.X
Subtasks Completed
out of 4

2.3.1 Initial Setup

Number of 2.3.1.X
Subtasks Completed
out of 4

2.3.1.1

Ensure we can receive
images transmitted by
the front-end

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.1.2

Create a dataset for use
in board state
determination (May not
be explicitly required if
we do not use nn/ml)

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.1.3

Set up codebase
location in team Gitlab
repository Completed? (Y/n)

2.3.1.4

Set up OpenCV
.gitignore Completed? (Y/n)

22

2.3.2 Calibration

Number of 2.3.2.X
Subtasks Completed
out of 2

2.3.2.1

Ensure the images we
receive are in a
standardized format (file
type, size, orientation,
etc.) Completed? (Y/n)

2.3.3 Image Processing

Number of 2.3.3.X
Subtasks completed out
of 3

2.3.3.1

Setup python notebook
and Generic OpenCV IO Completed? (Y/n)

2.3.3.2

Implement generic
edge/contour detection
of an image

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.4

Board State
Determination

Number of 2.3.4.X
Subtasks Completed
out of 8

2.3.4.1 Do line detection

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.4.2

Check for chessboard
layout from the
detected lines

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.4.3

Implement highlighting
only the chessboard for
testing and visualization
purposes

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.4.4

Ensure we can find a
single chess piece and
place a bounding box
around it

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for

23

other activities to call
methods in a library?

2.3.4.5

Ensure we can find
multiple chess pieces
and place accurate
bounding boxes around
them

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.4.6

Detect the type of each
chess piece found

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.4.7

Detect the position of
each chess piece on the
board

% complete? What
stage are you in?
(research, import,
customize, or develop)
Portability? Easy for
other activities to call
methods in a library?

2.3.4.8

Ensure we have and use
a set format for the
board state when
communicating with the
game engine Completed? (Y/n)

2.4 Game Engine

Number of 2.4.X
Subtasks completed out
of 3

2.4.1

Game Engine Setting
Customization

Number of 2.4.1.X
Subtasks completed out
of 1

2.4.1.1

Develop activities to
change the game engine
settings for items such
as difficulty and
response time (depth in
chess engines)

Settings understood?
(Y/n) How many
settings are we going to
customize? %
Complete? # of Screens
Developed? # of
customized setting
completed?

2.4.2 Import Game Engine

Number of 2.4.2.X
Subtasks Completed
out of 3

2.4.2.1 Download Game Engine Completed? (Y/n)

24

2.4.2.2

Build and Compile the
Game Engine Binary Completed? (Y/n)

2.4.2.3

Import the binary into
the backend. Do any
necessary environment
configuration as needed

Imported? (Y/n) %
Configured?

2.4.3 Result Decoding

Number of 2.4.3.X
Subtasks complete out
of 1

2.4.3.1

Develop, import, or
customize the library for
decoding the
recommended move
into terminology the
average user can
understand

% complete, Number of
pieces translated?
Number of locations
translated?

Table 1: Individual Task Metrics

2.4 PROJECT TIMELINE/SCHEDULE

Our Gantt chart(s) are extremely detailed and contain a breakdown for each task. However, do the

size of said chart; it is unable to fit within this document and is attached as a separate excel

spreadsheet document. Therefore, we have compressed subtasks to fit under major tasks and

broken months down into 4 segments rather than by individual days to generate compressed

figures that can be used for this report. Even these charts are large, and we will have separate

figures for milestones, project planning, and development below. Figure 2, below, contains the

milestones discussed in section 2.3.

25

Figure 2: Gantt Chart – Milestones

Figure 3, below, contains the compressed Gantt Chart for Project Planning and Design. Note that as

we encounter issues, the design may need to be revisited, and therefore these phases may be

repeated throughout the semester.

Figure 3: Gantt Chart - Project Planning and Design

Figure 4, below, is the compressed Gantt Chart for development. This chart initially appears to be

more Waterfall than Agile due to the initial dependencies required. However, as we progress in the

project, and especially during 492, we will be using more Agile principles and practices. At this

point, we do not know what features we will add after initial development ends in February, so we

simply added a section for adding features and testing.

26

Figure 4: Gantt Chart - Development

2.5 PROJECT TRACKING PROCEDURES

Our group is utilizing several different tools to track progress and ensure good communication.

Our primary method of keeping in touch day-to-day is a GroupMe chat that is used for informal

communication and quick, non-essential updates on work. This is meant to be used to keep us all

in touch and on the same page, but not used for major discussions or posts that can be lost easily.

Our team has two weekly meetings for important discussions: one with our advisor, Dr. Zambreno,

and one without. These meetings are used to go over our progress in the days between meetings,

discuss upcoming work, and complete group work. Meeting notes are stored on a shared Google

Drive that we use for all important documentation. This includes research, notes, assignments, and

design information. Additionally, our group will use GitLab to store and track our progress on

development work overtime. Lastly, our group will use Trello boards for monitoring tasks during

our sprints. While our initial development is more waterfall, this is necessary to get the project off

the group, and we will transition entirely to the agile methodology after the initial baseline has

been created. Regardless of what methodology (or mix) we are currently using, the Trello board will

be significantly easier to track tasks than google drive.

2.6 PERSONNEL EFFORT REQUIREMENTS

As mentioned in section 2.3, given the detail and the sheer number of tasks we broke the project

down into, the table format used in this section as well as section 2.3 is not ideal. Our major project

components are divided into tasks, each with many subtasks, and these subtasks also have subtasks

when you get to the backend components. We did our best to represent the hierarchy using task

numbers and a combination of fill colors and indentation.

27

Table 2, below, shows the detailed personnel effort requirements for each task to complete our

initial development. After these tasks are completed in Mid-February 2021, we will begin iterating

and adding nice to have features. The total development hour estimate for the initial tasks is 409

hours. For a much clearer representation of this table and task hierarchy, please consult the

extremely detailed and extensive breakdown in the excel spreadsheet posted on our website

Task
Number

Top Level
Module Task Name

Subtask Description
(If Needed)

Further Subtask
Description
(If Needed)

Hour Effort
Estimate

1
Generate
Requirements

1.1

Meet With Product
Owner and Advisor Dr.
Zambreno for project
kickoff 7

1.2

Research the problem
and empatize with
users 13

2
Market
Research

2.1 AR Glasses 12

2.2 Computer Vision 12

2.3 Chess Engine 12

2.4

Network
Communication and
Protocols 12

2.5

Existing Mobile Back-
ends 12

3
Define
Solution

3.1 Select AR Glass Device 7

3.2

Select Computer
Vision Software and
Libs 30

3.3 Select Chess Engine 4

3.4

Select Where Backend
Will Live

3.4.1

Make and Ideal Backend
Selection 7

28

3.4.2

Determine backup
backend selection 7

1
AR Glass
Application

1.1 Project Creation

1.1.1

Create Project within
Android Studio and Select
Design Layout, Setup
.gitignore 3

1.1.2

Import Vuxiz Blade
hardware Profile 1

1.2 Welcome Activity

1.2.1

Create Welcome Activity
to be seen upon Glass
Power On 2

1.2.2

Connect to saved paired
devices. This many not be
necessary if the entire app
can run on the Vuzix Blade 5

1.3 Initial Setup

1.3.1

Develop Activities for
device setup including
potentially pairing with a
companion device if
necessary 7

1.3.2

Create a way to save
paired devices so that
once initially paired,
devices are auto paired
upon following boot ups.
This may not be necessary
if entire app can run on
the Vuzix Blade 3

1.4 Calibration

1.4.1

Develop Activities needed
for camera and computer
vision algorithm
calibration 10

1.5 Image Capture

29

1.5.1

Develop Activities needed
for capturing an image 4

1.5.2

Setup voice Commands to
take picture on user
command 10

1.5.3

Setup touch sensors to
take picture on user
gesture 2

1.6 Pre Processing

1.6.1

Convert color images to
grayscale to minimize
computational complexity
and data size 5

1.7 Display Move

1.7.1

Develop Activity for
Displaying the engine's
recommended move to
the user (Text Estimate),
Includes implementing
library calls into activity 3

1.8 Communication

1.8.1

Develop, import, or
customize library for
connecting to WIFI (or any
other network medium
we will need to connect to
the backend). This may
not be necessary if we run
everything on the glasses. 7

1.8.2

Develop, import, or
customize library for
encoding images to be
passed to the backend 3

1.8.3

Develop, import, or
customize library for
encoding and decoding
text passed to or from the
backend 2

2 Backend

2.1 Project Creation

2.1.1

Create the project within
Android Studio and select 3

30

the Design Layout and
.gitignore

2.2 Communication

2.2.1

Develop, import, or
customize library for
connecting to WIFI (or any
other network medium
we will need to connect to
the front-end). This may
not be necessary if we run
everything on the glasses. 7

2.2.2

Develop, import, or
customize library for
decoding images passed
from the front end 3

2.2.3

Develop, import, or
customize library for
encoding and decoding
text passed to or from the
front-end 2

2.2.4

Develop, import, or
customize library for
communicating with the
game engine 7

2.3 Computer Vision

2.3.1 Initial Setup

2.3.1.1

Ensure we can
receive images
transmitted by the
front-end 4

2.3.1.2

Create a dataset for
use in board state
determination (May
not be explicitly
required if we do not
use nn/ml) 4

2.3.1.3

Set up codebase
location in team
Gitlab repository 1

2.3.1.4

Set up OpenCV
.gitignore 1

2.3.2 Calibration

31

2.3.2.1

Ensure the images we
receive are in a
standardized format
(file type, size,
orientation, etc.) 2

2.3.3 Image Processing

2.3.3.1

Setup python
notebook and
Generic OpenCV IO 3

2.3.3.2

Implement generic
edge/contour
detection of an image 3

2.3.4

Board State
Determination

2.3.4.1 Do line detection 2

2.3.4.2

Check for chessboard
layout from the
detected lines 5

2.3.4.3

Implement
highlighting only the
chessboard for
testing and
visualization purposes 2

2.3.4.4

Ensure we can find a
single chess piece and
place a bounding box
around it 2

2.3.4.5

Ensure we can find
multiple chess pieces
and place accurate
bounding boxs
around them 5

2.3.4.6

Detect the type of
each chess piece
found 20

2.3.4.7

Detect the position of
each chess piece on
the board 20

2.3.4.8

Ensure we have and
use a set format for
the board state when
communicating with
the game engine 4

32

2.4 Game Engine

2.4.1

Game Engine Setting
Customization

2.4.1.1

Develop activities to
change the game
engine settings for
items such as
difficulty and
response time (depth
in chess engines) 15

2.4.2 Import Game Engine

2.4.2.1

Download Game
Engine 1

2.4.2.2

Build and Compile the
Game Engine Binary 3

2.4.2.3

Import the binary
into the backend. Do
any necessary
environment
configuration as
needed 5

2.4.3 Result Decoding

2.4.3.1

Develop, import, or
customize library for
decoding the
recommended move
into terminology the
average user can
understand 5

Table 2: Personnel Effort Requirements

2.7 OTHER RESOURCE REQUIREMENTS

The physical resources needed to complete this project would be

• A chessboard (gameboard) and chess (game) pieces: We will purchase a traditional chess

set off amazon. This set will ideally have the lettering and numbering such that a user

unfamiliar with chess knows where a location on the board, such as F6, is.

• Physical space for testing and development as needed: As the project progresses, they will

need to be more interaction between members of the team as components begin to

integrate, and when testing is needed. This physical space could include one of our

apartments but is likely to be a meeting space such as the TLA.

33

• Android Development Environment: The team will need an environment to develop the

AR and Back-end Applications. The emulators in Android Studio should suffice for this.

Additionally, we may require additional knowledge resources in the form of conversations with

expert faculty.

2.8 FINANCIAL REQUIREMENTS

To conduct this project, we purchased the Vuzix Blade AR Glasses. They were purchased on sale

through Amazon for $499.99, pre-tax. Additionally, we purchased a traditional chessboard and

piece set from Amazon for $19.99, pre-tax.

34

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Our project is similar to existing chess engine mobile applications. These applications consist of a

chess GUI and engine that allow a user to play chess against an AI with top ELO chess engines'

assistance. There are a variety of applications across many platforms, but the most famous one is

the Android application known as DroidFish [1]. We are looking to perform the same backend

functionality as this app, but instead of playing the game on the phone, we will use AR glasses to

analyze a physical board. While our app will not have near the customization possible with

DroidFish, our project's advantage is the expansion into physical game analysis through AR. By

expanding the project into the real world, we add a computer vision element into the project that is

based on a variety of published papers and methodologies.

When it comes to the computer vision aspect of our project, there has been a good bit of research,

and even some projects, whose aim is to recognize a chessboard and the piece positions. The two

major methods used for recognition are feature recognition/machine learning and trained neural

networks. The main recognition technique observed for detecting the chessboard itself has been

feature recognition, specifically techniques using Hough Transform Line Detection with data

processing on the lines found. However, some methods do use trained neural networks to do

chessboard detection. When it comes to the actual piece detection, the most used technique seems

to switch, with neural networks becoming a more present way of determining the chess piece. The

two main projects that we have used in figuring out the techniques we want to use, and with just

testing different things in general, have been the ChessboardDetect by Elucidation [2] and Visual

Chess Recognition by Danner and Kafafy [3].

3.2 DESIGN THINKING

Given our project's nature, the empathize and define stages of design thinking had already been

completed by our product owner, Dr. Zambreno. He explained his thoughts and conclusions from

these phases in our initial kickoff meeting. Initially, Dr. Zambreno defined the problem to focus

solely on a chess implementation, but after further consideration and discussions with our team,

we expanded our project to be more modular and allow for flexibility and easy implementation of

multiple strategy board games. Our problem definition can be found above in section 1.2.

Using this problem definition, we moved to the ideate state. The nature of how our problem was

defined did not allow for a lot of design flexibility regarding how to attack the problem, but rather

what components, libraries, and games should we pick. In this stage, we explore a variety of

different AR Glass options, including major names such as the Google Glasses and Microsoft

HoloLens. In conjunction with the AR Glass ideation, we investigated a variety of computer vision

techniques and libraries, including OpenCV, Computer Vision Toolbox, ML.Net, and Google

Collab. We also explored a variety of options for games to implement, including tic-tac-toe,

connect-4, checkers, and chess. We felt that we should shoot for a chess implementation, but we

wanted to have other more straightforward options if it would prove difficult. After selecting chess

35

as our game of choice, we began researching existing Android and iOS apps that were similar as

well as powerful chess engines such as Stockfish, Komodo, and Cuckoo. We then took our

approximately six ideas for AR Glasses and chess engines. We narrowed them down to one idea

each before presenting these recommended options to our Product Owner, Dr. Zambreno. After

receiving Dr. Zambreno's approval, we began fleshing out a prototype development plan.

3.3 PROPOSED DESIGN

Our current approach can be broken down into three areas: AR Glass Application, Computer
Vision, and Game Engine. The flow of our approach is:

1. Take Calibration Images using chessboard pattern
2. Send Images to Computer Vision Module to calibrate the OpenCV algorithms
3. Send Okay Signal to AR Glass application from backend indicating ready for use
4. Take a snapshot of the chessboard using AR Glasses
5. Send snapshot to the computer vision module
6. Run computer vision algorithm to determine the chessboard state
7. Pass the board state to the game engine to determine the recommended move
8. Send recommended move to the AR Glass Application
9. Display Recommended move on the AR Glass Application
10. Repeat Steps 4-9 as the user continues to play

Each module of our project is broken down below:

AR Glass Application:

• Using the Vuzix Blade's camera, the application will take a picture of the chessboard and
pass this image to the backend, which may live on a paired mobile device.

• The camera on the Vuzix will need to be calibrated upon first-time use using standard
OpenCV calibration algorithms.

• If the backend lives on the mobile device, the Vuzix Blade will need to be connected to
WIFI and will share the image via HTTP server calls, or connected to the device through
Bluetooth, and the image will be sent directly between the paired devices.

• The Glass application will also be responsible for displaying the chess engines
recommended move on the AR display.

o Ideally, this recommended move would be overlayed on the chessboard, however,
we plan to display the recommended move as text using proper chess terminology.

Computer Vision:

• The computer vision processing for our application will run on the "backend" application.

• Upon receiving the image on the mobile device, we will run computer vision algorithms
using OpenCV to determine the current state of the chessboard.

• Setup algorithms to ensure camera calibration.

• We will likely use trained image classifier to locate and identify chess pieces on the
chessboard.

• Some image pre-processing may occur on the Vuzix Blade device, depending on its
computation abilities.

Game Engine:

• The game engine will run on the "backend" application.

36

• The game engine is responsible for calculating the best move from the current board state
as determined by computer vision.

• After determining the recommended move, the game engine module will need to
communicate the move to the AR Glasses.

o The game engine output will need to be converted to something that the layperson
can understand.

• The engine should be customizable such that users can determine how many moves to
analyze before providing a recommendation.

• The engine development should be extremely modular and allow for usage of multiple
engines for multiple types of games as needed (Ex: Connect-4, chess, and checkers)

Ideally, the AR Glasses will host the front end and back end application, however, the backend may
have to be hosted on a separate device due to processing limitations. The three modules discussed
above, along with the purchase of the Vuzix Blade AR Glasses, satisfy all functional requirements of
our design. Additionally, the above design uses the Vuzix Blade which was purchased for less than
$500, meeting the purchase price requirement for this project. As part of this purchase, we are
given access to a Vuzix Blade Developer account that provides emulator access, such that physical
Android devices are not needed.

The above design also follows the "build when you can, purchase when necessary" philosophy we
want to follow for this project. The design description above does not touch on any of the
Environmental Requirements described in section 1.4, however, a simple information sheet
included with the product explaining the recommended usage and storage environments could
easily be included with the final product.

3.4 TECHNOLOGY CONSIDERATIONS

When analyzing technology, we looked at three areas: AR Glasses, Computer Vision, and Game

Engine. We found a variety of AR Glass options, however, due to budget and computing

requirements, only three of these options were given any significant consideration:

• Google Glass Enterprise 2.0

o Strengths: Lightweight, fast processor, supports voice commands, has a good

camera, lots of support is available, and the development is Android-based, which

we are familiar with.

o Weaknesses: $1000 dollar price tag, emulator options are less than stellar

• Microsoft HoloLens (Edition 1 or 2)

o Strengths: Comfortable, supports gesture and voice recognition, large FOV, is

extremely powerful, and lots of support and resources available.

o Weaknesses: Extremely expensive and is outside of our price range. However, we

may be able to check this out from the department. The glasses are large and not

discrete.

• Vuzix Blade

o Strengths: Glasses are discrete, Developer account provides company support,

supports voice and gesture commands, and the development is Android-based

which we are familiar with.

o Weaknesses: Not as powerful as the other two options, community support and

examples are very limited.

37

We decided that the Vuzix Blade was the best option as it had all the features necessary to

complete the project, was half the price of the Google Glasses, and was just as discrete.

While deciding on the hardware to use, we also did research into potential computer vision

solutions. The two realistic solutions we found were OpenCV and MATLAB Computer Vision

Toolbox. The strengths and weaknesses of each are as follows:

• OpenCV

o Strengths: Open source, free, industry-standard, active community, large library of

algorithms, multiplatform support, multilanguage support (including ones we

know).

o Weaknesses: Massive library, lots of guides used older versions, which may have

some breaking changes (fixable but not always easy to find).

• MATLAB CV Toolbox

o Strengths: Large library of CV tools, MATLAB language is made for data

manipulation (what we are doing).

o Weaknesses: Only usable in MATLAB, must have MATLAB program access, we do

not have much experience with MATLAB.

With these strengths and weaknesses in mind, we decided to use OpenCV. The strongest reasons

for this were the experience we had with OpenCV supported languages, strong community support,

and the Open Source availability. However, having done this research, we know that MATLAB CV

Toolbox is a viable alternative that we can use if OpenCV does not work as well as we need it to.

We considered a variety of chess engines such as StockFish, Komodo, Cuckoo, Leena Chess Zero,

and Shredder. These engines all have similar capabilities, and therefore we picked the one that

would be easiest to work with, which was StockFish. This engine has precompiled binaries suited

for Android, was the most well-documented engine, and had implementation examples that made

it an easy choice.

3.5 DESIGN ANALYSIS

So far, our proposed design has worked. Dr. Zambreno encouraged us to sperate out design from

implementation wherever we can, resulting in our plan being very flexible and avoiding specific

implementation details such as mentioning a specific library we plan to use. Additionally, we

designed to accommodate the potential for the backend to live off glasses. So far, we have no

reason to indicate that this will be necessary and can cut these modules if they are not needed.

The only change we have made so far has been in implementation, not design. This change was in

the computer vision module. The initial method and algorithm we tried was not determining the

lines and squares on the board at a level we would like, and we pivoted to another algorithm and

method that has been more promising so far.

So far, we have had little information or observations to modify or iterate on our design. We did

one iteration at the beginning of the semester, and the result of that iteration is described above. As

we continue to progress throughout the project, we plan to use the observations through demos

amongst the team and with Dr. Zambreno to generate ideas to modify or iterate over the design.

Currently, the only iteration we have planned for CPRE 492 is to expand the move display to be an

38

AR overlay rather than just text. However, through demos over the next 6 months, we will have

significantly more to iterate on once our prototype is completed.

3.6 DEVELOPMENT PROCESS

Our team has decided to use an Agile development approach for our AR Chess Advisor project. By
following this approach, we will be able to manage our time best and ensure we are working
efficiently towards our client's goals. Initially, our development will not appear to follow Agile
practices due to the initial setup work that is necessary to support the iterative Agile methodology.
However, after the first couple of weeks of initial setup, we will be positioned to transition to a
modified Scrum.

We will have two scheduled meetings each week, where we give status updates and plan what work
needs to get done for the coming "sprint." One meeting each week will include our client, allowing
us to update them on our progress and receive regular feedback. This model will allow us to
continually modify our tasks and pivot our focus areas as the project progresses in order to meet
the client's needs best.

We will continue to use the Agile approach throughout the duration of the project, though the
weekly meetings will likely go from having a greater focus on planning, researching, and reporting
findings to have a greater focus on individual statuses, integrations, and demos.

3.7 DESIGN PLAN

Our system is relatively simple architecturally, as we plan to host the front end and back end

components entirely on the AR Glasses as of now. This greatly simplifies our design's architecture

as the interaction among modules is all contained within the same device. However, the proposed

design does include a safety net of communication libraries and modules should the backend be

hosted on a different device.

This section will showcase figures representing the modular design, flow, and sequence diagrams

that illustrate how the design components will interact. For a more detailed breakdown of these

components, please consult the corresponding sections in Chapters 2 and 3

The team has designed the system illustrated below in Figure 5.

39

Figure 5: Modular Design Diagram

Each of the functional requirements outside of obtaining the AR Glasses is accomplished by some

combination of the modules in this diagram:

• Capture the game board state using the AR glasses: This the responsibility of the front-end

module. The front-end module will be responsible for capturing a usable image of the

board state and doing any pre-processing on the image that is necessary for the computer

vision module.

• Detect and process the board state using computer vision algorithms: Using the image

captured from the front-end module, the computer vision module will take the image and

transform it into a data structure to represent the board state using a variety of algorithms

for the board, piece, and location detection.

• Determine the best move given the current state using top game engine(s): This is the

responsibility of the game engine module. Using the board state passed from the computer

vision module and the corresponding engine command, the engine should output the

recommended move.

• Indicate recommended moves to the user on the AR glass display: Using the output from

the game engine, the user should see the recommended move on-screen using language

understandable to the layperson.

The components above are extremely modular and cater to both use cases: playing the game with

assistance and playing against the engine. The flow for both use cases is very similar, with the

major difference being what color the engine believes you are playing as. Given the similarities and

modularity, adapting to allow for both use cases will be very simple.

A majority of the submodules have no significant constraints beyond their functional requirements.

The exceptions are the computer vision submodules. These modules have the additional constraint

of being relatively fast such that the user's game experience is not interrupted. This does not appear

like it will be a problem, but we will track it as we go.

40

In addition to the system design sketch, Figure 6, below, shows the high-level flow through these

modules and provides a visual representation of how the modules interact to satisfy the functional

requirements described above.

Figure 6: Component Flow Diagram

Currently, we are operating under the assumption that all the components will run on the AR

Glasses. As a result, we have no initial pairing or connections to the backend to manage, greatly

simplifying the flow. The only decision to be made is whether calibration of the computer vision

algorithms is required. If so, we take the top branch; if not, the user is ready to play the game and

can take the bottom branch. The bottom branch is a circular flow that repeats while the user is

playing the game. In the above diagram, front-end components are in blue while backend

components are in green. The diagram omits the shutdown sequence for if the user powers off the

glasses as this is very straightforward.

An even higher-level functional sequence can be seen below in Figure 7.

41

Figure 7: High Level Sequence Diagram

While the Vuzix Blade does run a modified Android operating system, there are unique navigation

and display elements as well as size constraints that prevent us from developing specific UX screens

for the device. However, all screens will adhere to the Vuzix Developer Account recommendations

for both design and implementation and undergo team reviews and UX iterations as they are

developed. In section 5: Implementation, we will have a few screenshots of implemented screens

according to the recommendations from Vuzix. The user interfaces for this project are enumerated

below:

• Welcome Activity

• Image Capture Activity

• Calibration Activity

• Initial Setup Activities (Not needed if the backend lives on the Vuzix Blade)

• Display Move Activity

42

4 Testing

Testing and test results are a great indicator of the success and progress of our project. Throughout

the project, we will have a variety of testing methods, including unit, interface, and user testing.

Each of these is discussed below in detail.

Additionally, we will perform regression testing throughout the project. This is especially

important to the project's computer vision aspect as we continue to tweak algorithms to determine

the best performance. For front-end and backend modules, these regression tests will be less

frequent and coincide at a minimum for each of the major releases (Prototype, Minimum Viable

Product, and Final Design) but will ideally be done for each demo.

When developing our tests and overall testing plan, our Test Lead Brett, and others involved, plan

to consult the Software Quality Assurance Process Standard [4].

4.1 UNIT TESTING

We will conduct individual unit tests on two major Android components. The first is the libraries

for communication. We will test each of these libraries and their functions individually to ensure

that they perform their specific functions. These communication libraries are crucial to our

project's overall functionality and are used by almost every screen we develop; therefore, we need

to make sure the base is stable before we start building on top of it. Additionally, communication

libraries, when combined with other features, can be very difficult to debug. The communication

library testing will be fully automated, and the library should pass all tests to be considered

complete.

The final Android software unit we will do unit tests for is image pre-processing. We will test to

make sure that the image processing functions perform their intended functions by passing dummy

images to a function and verifying the expected output. The visual output of these tests will need to

be verified by a human, and our testing lead Brett, will sign off on this unit.

Another software unit that will be tested individually is the game engine. Testing this module will

be done by sending commands to the engine and looking for an expecting response and should

ensure that the output we are getting from the engine is a viable move for the user to make. The

library for sending commands will be tested by a human, ensuring the resulting output of the

command is as expected, while the tests of the library for decoding the output will be automated,

and the unit should pass all tests to be considered complete.

In order to test our computer vision implementation, we will implement regression testing on a

series of test images. The test images will be taken via the Vuzix Blade device and will contain a

variety of known game board states and orientations. Finally, we will compare the computer vision

pipeline's testing results with the known correct states, and we will require a certain percentage of

accuracy in our final product. The computer vision implementation unit testing will be fully

automated.

43

4.2 INTERFACE TESTING

In our project, the interfaces correspond primarily to user interfaces on the glasses. We will have a

variety of screens that use the communication and/or game libraries that were unit tested. These

interfaces will be tested on Android Emulators before being run on the actual Vuzix Blade device.

All these interfaces will need to be verified by a team member as acceptable in terms of

functionality as well as ease of use. These interfaces, as well as an explanation, can be found below:

• Welcome Activity: This activity is shown when the user powers on the glasses. If it

becomes necessary to host a separate backend application, this activity will also be

responsible for establishing the appropriate connections such as WIFI or potentially

Bluetooth to a paired device.

• Initial Setup: This activity would be displayed if the backend needs to run on a separate

device. This activity aims to display the setup information for pairing with this device,

initiate pairing requests, and then save the paired device such that it can be connected to

automatically on power on in the future.

• Calibration: This activity is used to capture and send the necessary calibration images to

the computer vision module, wherever it ends up living.

• Image Capture: This activity is used to capture images, do pre-processing, and send the

images to the computer vision module, wherever it ends up living.

• Displaying a Recommended Move: This activity will display the decoded move

recommended from the game engine in an understandable text-based format for the user.

• Customizing the Game Engine: This activity will allow the user to customize the game

engine's difficulty and timing, such that if they are playing under time constraints, the

engine gives the user a recommended move within the user's requirements.

Additionally, the computer vision interface will need to undergo testing. In addition to our

regression testing (described above in our unit testing), we will test our communication between

various portions of the front-end and backend implementations. These interfaces include:

• Image Receiving: This interface allows the Android application running on the AR device

to communicate an image from the Android image capture interface to the computer

vision pipeline.

• Game Engine Translation: This interface allows for "translation" from the game board's

image into a game state communicable to the game engine.

These interfaces are easily tested and verified by humans and can use the test data generated from

the unit testing described above to minimize repetition and duplicate effort. These interfaces will

be tested individually and by hand, using mock data when necessary and real data where possible.

Our Test Lead, Brett will be responsible for coordinating the testing plan for these activities as well

as the acceptance criteria starting in mid-February 2021.

4.3 ACCEPTANCE TESTING

Acceptance testing for us will consist of two levels. The first level is where we combine two or

more of the interfaces together to create a more complete flow through the app. These flows and

their description can be found below:

44

• Welcome and Initial Setup: The user should be able to turn on the glasses and be guided

through an initial setup (if necessary) to pain the glasses to a companion mobile device

before returning to the welcome screen. After the initial setup has been completed once,

the user should only be shown the welcome screen while the device auto connects to the

saved device.

• Calibration and Image Capture: The user should be able to capture calibration images and

send them to the computer vision module to calibrate the algorithms. After doing so, a

signal should be sent back, and normal game board images should be captured for

gameplay.

• Game Engine Customization and Displaying Result: The user should be able to customize

the engine to meet their strength and time requirements, and we should be able to see

faster response times to the display.

• Computer Vision Pipeline: The project should be able to correctly identify board states of

test images with known correct values with a certain level of accuracy. Sample images are

provided with the project, and a testing framework is provided for the user to do their

own tests.

These level one tests cases are used to test each of the individual functional requirements (1.4)

amongst the development team. These level one tests will be tested individually and by hand, using

mock data when necessary and real data where possible. Our Test Lead, Brett, will be responsible

for coordinating the testing plan for these activities using the functional requirements to determine

the acceptance criteria starting in mid-February 2021.

Upon passing the level one tests among our team members, we will integrate all components into

our final design and begin testing internally by playing full chess games. After we feel confident

that our design is working as expected, we will take our design to our Product Owner and client Dr.

Zambreno so that he can play some games and provide feedback, especially regarding any non-

functional requirements he feels should be added. We will iterate on the design based on his

suggestions and then present our iterated design to him again. At this time, we would also look to

test the product on other chess players. This could include people at the library, members of clubs

such as IEEE, Critical Tinkers, the ISU Chess Club, or anyone interested. We will compile the

results and feedback provided to us and iterate on the product once again before showcasing our

final product to Dr. Zambreno. We hope that through our user tests, we can refine our prototype to

address user pain points to allow for more straightforward use.

4.4 RESULTS

So far, the only testing we have done has been eye tests for both the front-end and the backend, as

well as encoding and decoding tests. On the front-end, we have developed only two screens so far

that we have tested on an Android phone to verify that they do indeed work. The other testing we

have done on the front-end is unit testing the JSON formats and image and text encoding and

decoding, all of which have succeeded.

The only backend testing we have done so far has been eyeball tests on the algorithm. In doing

these tests, we found the methods and algorithm was not as viable as we thought, and we pivoted

45

to another method in mid-October. The initial approach struggled with efficiently detecting the

board's lines and determining the squares, something that is essential for our project. Therefore, we

pivoted to a new method that is producing better results to the eye, and we plan to move forward

with that approach.

Below, in Figures 8 – 11, are the results of our computer vision algorithm testing so far:

Figure 8: Line Detection

46

Figure 9: Internal Point Detection

Figure 10: External Point Detection

47

Figure 11: Full Point Detection

As you can see from the images above, the computer vision module of the project is coming along

nicely can currently can recognize and detected the board correctly, accomplishing the first of

three elements of this module required to complete the project.

5 Implementation

Our team started development in early October according to the tasks on the Gantt chart. So far,

the team has been extremely successful in both the front-end and backend areas of the project. On

the front-end side, the team has the communication and encoding/decoding libraries, pre-

processing image libraries, as well as two key screens. The first screen is the Welcome Activity

shown below in Figures 12 and 13.

48

Figure 12: Game Advisor Welcome Screen

49

Figure 13: Game Advisor Welcome Screen Scrolled Right

Figures 12 and 13 show the Vuzix Blade application running on Google Pixel emulator, so the size is

not to scale, however the features are all still present. On the actual device, the application will not

have all the blank space in the middle between the tittle and the scroll bar at the bottom. This

scroll bar is Vuzix's standard way of navigation within the app. Using the buttons on the side of the

device, users can scroll through this menu and select the tile they want. Currently only the Start

Game and Image Capture Tiles are hooked up while the others will show Toasts to signify that it

would open another page.

Below in Figure 14, you seen the output of the Image Capture Activity when running the application

on the Vuzix Blade device. Note that this screen is unable to be recreated on the Pixel emulator like

the screens above because it requires camera access that the emulators do not provide. However

this screen if very simple, it has two buttons, a back button and a take image button in the bottom

scroll bar and the rest of the screen shows you an camera preview so that you can see what the

picture would be off before you capture the image.

50

Figure 14: Proof of Image Capture

Currently, we do not have the computer vision pipeline imported into the Android project, and

therefore, we have nothing to pass the image to once taken. Currently, we are just saving the image

to the device's SD card to show that the image was in fact, captured.

Figure 15, below, shows an example recommended move that would appear after an image has been

captured and processed. Note this screen, like figures 12 and 13 is emulated and not to scale.

51

Figure 15: Example Recommended Move

This text will appear in standard chess notation on the top right of the image capture screen,

allowing for the user to continue to repeat the loop of capturing images and getting recommended

moves without navigation on their part.

Ideally, these screenshots of the application would have been taken on the actual Vuzix Blade

device, however, attempts to take pictures of the display on the glasses were unreadable and blurry.

We hope to be able to demo these screens using the actual device next semester assuming we have

the opportunity to do so in person.

On the backend side of things, we have been able to get the Stockfish Engine binary imported into

the application and have written libraries for sending commands and decoding the output. The

computer vision pipeline is also coming along nicely. At this point in the project, we can detect the

board state very well, as you can see in some of our testing/implementation images in Figures 8-11

above. We have not yet started on chess piece detection as we had initially planned, however, we

feel we are in a great position to continue implementation in CPRE 492 in January.

52

Our implementation plan for CPRE 492 picks up right where we left off in CPRE 491. Our current

Gantt Chart and project plan has initial task development continuing until the end of February.

The plan does not include any revisions, modifications, or iterations that we undertake as a result

of our prototype demo at the end of November. During these first two months of 2021, the front-

end development work is a bit light in comparison to the computer vision work that is still being

finished. As a result, at least one front end developer will begin iterating on the existing screens

based on the feedback from our prototype demo. Depending on the iterations required at this

point, we may also have a developer or two start working on nice to have features such as visual

overlays rather than just text. We will also be doing user and interface testing during this time.

Once the initial computer vision tasks have been completed and integrated in late February, we will

begin our first round of acceptance testing internally as well as the computer vision interface tests.

We will iterate once on the results of these tests and then demo the MVP to our Product owner Dr.

Zambreno. Taking his feedback, we will go through a series of iterations and further testing to

refine our design and implementation. During this time, we will also be working on nice to have

features such as AR overlay or expanding the project to support other strategy board games. At this

point, we are unsure of where next semester will lead and plan to let the feedback from our demos

dictate that path.

Regardless of the path, we plan to implement stricter review standards for next semester. Currently,

we are only reviewing merge commits, and this review is being done by only one person, typically

the team lead. Since the focus of next semester is on implementation and refining our design, we

plan to commit additional time and resources to the review process. This includes implementing

many of the processes described in the Standard for Software Reviews and Audits [5]. Specifically,

we will be expanding our technical review process to include at least one review approval per

traditional commit and at least two reviews for each merge commit. This is in addition to the code

passing the CI/CD pipeline containing a variety of tests.

As the semester comes to a close, we will wrap up our implementation and design a week or two

early and begin focusing on organizing project material so that it can be passed of to the next

senior design group. This includes passing off our shared google drive and source code.

6 Closing Material

6.1 CONCLUSION

As a team, we have successfully completed market research in the areas of AR Glasses, Computer

Vision, and Chess Engines and selected the devices and libraries that are the best fit given the

project requirements defined in section 1.4. After selecting the components for our project, the

team began working on planning out the project to achieve the goal of developing an application

that allows a user to play chess with the help of or against our selected chess engine.

Our project plan focused on three main components: AR Glasses, Computer Vision, and Game

Engine. This division was mainly driven by the requirements of the project as well as the natural

modularity of these areas. Within each area, we have a variety of tasks and submodules that keep

53

our project as modular as possible. We also planned for additional communication submodules in

each of these three modules in case the scenario appears where the backend (computer vision and

game engine) must live on a sperate host such as a mobile companion app. By planning out the

project this way and breaking up the tasks as we did, we left ourselves with great flexibility to pivot

to another strategy board game or module location if necessary. Our project plan is very detailed

and for further details please visit sections 2 and 3.

As we progress through CPRE 492, we plan to have a much more iterative approach to development

and design than we have had in CPRE 491. The iteration we will do in this class includes fixing pain

points, adding nice to have features, and making changes based on testing failures. This will allow

us to best progress towards a final product that our Product Owner Dr. Zambreno and other

product users are happy with.

6.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style

(ex. IEEE).

[1] Osterlund, P. (2020) Droidfish (Version 1.84) [Source code]

https://github.com/peterosterlund2/droidfish

[2] Sam (2018) ChessboardDetect [Source code] https://github.com/Elucidation/ChessboardDetect

[3] C. Danner and M. Kafafy, "Visual Chess Recognition," Stanford University, Stanford, California,

[4] "IEEE Standard for Software Quality Assurance Processes," in IEEE Std 730-2014 (Revision of

IEEE Std 730-2002) , vol., no., pp.1-138, 13 June 2014, doi: 10.1109/IEEESTD.2014.6835311.

[5] "IEEE Standard for Software Reviews and Audits," in IEEE Std 1028-2008 , vol., no., pp.1-53, 15

Aug. 2008, doi: 10.1109/IEEESTD.2008.4601584.

